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Abstract 

Wireless technologies are promising for industrial automation and distributed control due to the 

properties of mobility, reduced deployment and maintenance costs, and so on. By the technologies, 

wireless networks are formed for integrating processes and devices of industrial systems. 

Broadcasting is one of the most important operations in the wireless network for disseminating 

information throughout the entire network. Flooding is a simple mechanism to realize broadcasting, 

but it has high redundancy of retransmissions, leading to low transmission efficiency. Many 

broadcast protocols have been proposed for pursuing optimized transmission efficiency for wireless 

networks hypothetically deployed on the 2-dimesional (2D) plane. In some industrial applications 

(e.g., a multi-storey factory), however, wireless networks are deployed in the 3D space. In this paper, 

we derive the upper bound of 3D transmission efficiency and propose a 3D broadcast protocol, called 

3DOBP (3-Diemsional Optimized Broadcast Protocol), to achieve optimized transmission efficiency 

by partitioning the 3D space into multi-layer hexagonal prisms of a hexagon ring pattern in each 

layer. As we will show, the transmission efficiency of the proposed protocol is 1/π, which is better 

than those of polyhedron-filling 3D broadcasting approaches using cubes, hexagon prisms, rhombic 

dodecahedrons, and truncated octahedrons. To the best our knowledge, the proposed broadcast 

protocol is the one with the highest 3D transmission efficiency so far. 

Keywords: broadcasting, transmission efficiency, wireless networks, industrial applications 

1. Introduction 

Wireless technologies are promising for industrial automation and distributed control due to the 

properties of mobility, reduced deployment and maintenance costs, and so on [18]. Potential 

industrial applications using wireless technologies are coordination of mobile robots or autonomous 

vehicles, and industrial wireless sensor networks [6]. Some protocols are proposed to help form 

wireless networks for integrating processes and devices of industrial applications. For example, 

International Electrotechnical Commission (IEC) has approved WirelessHART [19], an extension of 

HART (Highway Addressable Remote Transducer) protocol for intelligent process measurement and 
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control instrumentation, as a Publicly Available Specification (IEC/PAS 62591Ed.1) to form wireless 

networks for industrial systems. It is now feasible to build a wireless network as the communication 

and distributed control basis of modern industrial systems. 

Broadcasting is one of the most important operations for disseminating data or control signals 

among nodes of a wireless network. Flooding is an intuitive approach to realize broadcasting, in 

which each node retransmits a packet when receiving it for the first time. Flooding is simple and is 

highly reliable; however, it may cause the broadcast storm problem [12] and has low transmission 

efficiency due to redundancy of retransmissions. As shown in [10], the theoretical upper bound of 

transmission efficiency is 0.61 for wireless networks deployed on the 2-dimesional (2D) plane.  

Some geometry-based broadcast protocols [5, 10, 11, 15] for 2D wireless networks have been 

proposed to pursue optimized transmission efficiency. Among them, the Optimized Broadcast 

Protocol (OBP) proposed in [11] achieves the highest transmission efficiency 0.55, which is about 

90% of the theoretical upper bound. In OBP, a node relies on hexagon rings centered at the 

broadcasting source node to decide if it should retransmit a broadcast packet when it receives the 

packet for the first time. 

In some industrial system environments, the wireless network is deployed in the 3-dimesional 

(3D) space instead of the 2D plane. A wireless network consisting of devices distributed in different 

floors of a multi-storey factory is a typical example. In such a 3D wireless network, the relationship 

between wireless communicating nodes should be 3D rather than 2D. This motivates us to investigate 

broadcasting and the transmission efficiency for 3D wireless networks. 

Some papers [1-3, 7, 16] study the arrangement of nodes to fully cover a given space with 

optimized number of nodes. Most of them [1-3, 7] are based on the regular polyhedron filling 

approach, which partitions the space into 3D cells, each being a polyhedron located by a node in the 

center. The paper [1] investigated how to fill the space with regular polyhedrons, such as cubes, 

hexagonal prisms, rhombic dodecahedrons, and truncated octahedrons. The cube is used as a 

fundamental element to model a 3D wireless network in [7]. The hexagonal prism, rhombic 

dodecahedron are studied in [2] and [3] for planning base stations to fully cover a 3D wireless 

network. The paper [16] proposes using the body-center cubic (BCC) structure to fill the space; 

interestingly, filling space by BCCs is equivalent to filling space by truncated octahedrons. 

When the center nodes of neighboring cells can communicate with each other, the polyhedron 

filling approach can be transformed into a 3D broadcast protocol by demanding the center node in 
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each cell to retransmitting the broadcast packet. We can thus design 3D broadcast protocols with the 

help of the above-mentioned regular polyhedrons to achieve good transmission efficiency. Such 

protocols have 100% coverage ratio, the ratio of the network space that is covered by the 

transmission ranges of the source node or the retransmitting nodes, when the node density is 

sufficiently high. The paper [4] adopts a different strategy to designing a 3D broadcast protocol, 

called Air to Air Communication Protocol (AACP), which requires vertex nodes, instead of center 

nodes, in hexagonal prisms to retransmit the broadcast packet for better transmission efficiency. Note 

that a similar protocol is also proposed in [14].  As we will show the AACP protocol does not achieve 

100% coverage ratio even when the node density is very high. 

  

Fig. 1 Illustration of the upper bound case of transmission efficiency in the 3D space 

 

In this paper, we generalize the definition of transmission efficiency for 3D wireless networks. 

To take two communicating nodes A and B in Fig. 1 as an example, the transmission efficiency is the 

ratio of the effective communication area (the region covered by spheres SA or SB, i.e., |SAÇSB|) over 

the total communication region (the summation of volumes of SA and SB, i.e., |SA|+|SB|), where SA 

and SB are the spheres centered respectively at A and B with the radius of R, the transmission range. 

When the distance between nodes A and B equals to the transmission range R, transmission 

efficiency reaches the upper bound. As we will show, the theoretical upper bound is 0.84 in the 3D 

space. 

We further propose an optimized broadcast protocol, called 3D optimized broadcast protocol 

(3DOBP), by partitioning the 3D space into multi-layer hexagonal prisms. As shown in Fig. 2(a), the 

network space is partitioned into multiple layers along the vertical axis (i.e., Z axis). And each layer 
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consists of a set of cells each of which is a hexagonal prism, as shown in Fig. 2(b). From the top-to-

down view, the cells in a layer form hexagon rings. As shown in Fig. 2(c), the hexagon rings of the 

middle layer is centered at the source node S (represented as з) that initiates the broadcast of a 

packet. From the source node and along the vertical axis, there is a starting node nearest to the center 

of a cell for each upper or lower layer. Only the starting nodes, the vertex nodes nearest to hexagon 

centers (represented as д) and specific vertex nodes nearest to some hexagon vertexes (represented 

as г) need to retransmit the packet. We carefully analyze the transmission efficiency of our proposed 

protocol and other polyhedron-filling approaches using cubes, hexagon prisms, rhombic 

dodecahedrons, and truncated octahedrons. As we will show, the transmission efficiency of the 

proposed protocol can reach 1/π. Compared with the other polyhedron-filling approaches, our 

proposed protocol is with the highest transmission efficiency. 

The rest of this paper is organized as follows. In Section 2, we introduce some related work. In 

Section 3, we present the proposed protocol. In Section 4, we analyze transmission efficiency of the 

proposed protocol and compare the analyzed result with those of polyhedron-filling based approaches. 

And finally, some concluding remarks are drawn in Section 5. 

 

 

Fig. 2 Illustration of partitioning the 3D space into multi-layer hexagon prisms of the hexagon ring 

pattern 

2. Related Work 

The paper [7] uses a cube as a fundament block to model a three dimensional network. It uses a 

cube as the approximation of a sphere of a node’s transmission space on the basis of the fact that a 3D 

space can be quantized by a set of cubes in geometry. The papers [2] and [3] study the base station 
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arrangement problem for 3D picocellular networks. They rely on the hexagonal prism pattern and the 

rhombic dodecahedron pattern, respectively, for positioning base stations. The paper [1] studies the 

sensor deployment problem for 3D wireless sensor networks. The problem is to select the minimum 

number of sensors for covering a given space, while keeping sensors connected. The solution can be 

solved on the basis of Kelvin’s conjecture. In 1887, Kelvin raised a question: “What is the optimal 

way to fill a three dimensional space with cells of equal volume, so that the surface area (interface 

area) is minimized?” Kelvin merely conjectured (but did not proved) that using truncated octahedrons 

to fill the space is optimal. In [1], truncated octahedrons are used for 3D sensor network deployment. 

Moreover, cubes, hexagonal prisms and rhombic dodecahedrons are also applied to the deployment 

for the sake of comparison. The structures are analyzed in terms of the number of cells needed to 

cover a given space. By the analysis, the truncated octahedron indeed presents the minimum number 

of nodes for deployment. The paper [16] proposes using the body-center cubic (BCC) structure for 

3D sensor network deployment. By BCC, sensors are deployed at eight vertexes of a cube and at the 

center of the cube. As shown in [1], the BCC-based deployment is equivalent to truncated 

octahedron-based deployment by the Voronoi tessellation analysis.  

The paper [4] proposes a 3D broadcast protocol, called air to air communication protocol 

(AACP), which partitions the space into multiple layers, each of which is further partitioned to be 

regular hexagon lattices, as shown in Fig. 3 (a). Only the nodes at (or nearest to) hexagon vertexes 

need to retransmit the broadcast packet. To take the scenario in Fig. 3 (a) for an example, a source 

node (S) initially issues the broadcast packet destined to locations (1), (2), and (3). The node nearest 

to the location (1) is responsible for retransmitting the packet. Then, the node nearest to the location 

(11) is responsible for the retransmission. The nodes nearest to the locations (111) and (112) are then 

responsible for the retransmission. Similarly, the other nodes nearest to the locations of hexagon 

vertexes are responsible for the retransmission and hence one layer of a plane is fully covered. As 

shown in Fig. 3(b), the source node S also triggers a forward node on each upper or lower layer plane 

to start the retransmission processes for the purpose that all nodes in the space can receive the 

broadcast packet. Note that the paper [14] also reports a similar protocol.  
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Fig. 3 Illustration of the broadcast protocol AACP proposed in [4, 14] 

The AACP protocol is transmission-efficient, as it partitions the space into multiple layers and 

tries to minimize the number of retransmissions on a layer plane by selecting a small number of 

strategic nodes to retransmit the broadcast packet. The selection of strategic nodes is based on the 

classical two-dimensional circle covering problem in [9], which asks “How to arrange circles such 

that the minimum number of circles can completely cover a given area?” The paper [9] showed that 

the regular hexagon lattice based arrangement is the best solution to the two-dimensional circle 

covering problem. AACP bases on such a hexagon lattice to select the nodes located at the hexagon 

vertices as the strategic nodes to keep as small as possible the number of strategic nodes and to keep 

the nodes’ connectivity. Although AACP is very efficient in selecting the strategic nodes for 

rebroadcasting on a plane, there exists uncovered space between two planes, as illustrated in Fig.3(c). 

In the Appendix, we show the ratio of the uncovered space is about 6% by simulation experiments 

using Matlab with the best environment setting suggested by [4] (i.e., with the hexagon side length 

being the transmission range R and the distance between two layer planes being 0.8R). We can 

certainly reduce the distance between two layer planes to eliminate the uncovered space problem. 

However, the number of overall strategic nodes is thus increased, and the transmission efficiency is in 

turn reduced. It remains open for AACP to decide the optimal value of the distance between two layer 

planes such that the network space is fully covered and the transmission efficiency is maximized. 

 

3. The Proposed Protocol 

       In this section, we describe the proposed protocol, 3-Dimensional Optimized Broadcast Protocol 

(3DOBP). We assume that each node is aware of its location but is not aware of the network topology. 

We also assume that all nodes are equipped with omnidirectional antennas, whose transmission 

ranges are of the same value R and are modeled as spheres of the radius R. 

3.1. Overview of 3DOBP 
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In 3DOBP, the entire network space is divided into multiple layers of height H. Each layer 

consists of a set of cells, as shown in Fig. 4(a). As shown in Fig. 4(b), each cell is a hexagonal prism 

of the side length L and the height H. Fig. 4(c) shows that the source node or the initial starting node 

(represented as з) is in the middle layer (layer 0) to broadcast a packet and the interlayer nodes 

(represented as Ã) is between layers to forward the packet to other starting nodes (also represented as 

з) in different layers (layers 1, -1, …, etc.) At a specific layer, only the nodes nearest to hexagon 

centers (represented as д) and the nodes nearest to some specific hexagon vertexes (represented as 

г) need to retransmit the packet. Note that below we use the term center node (resp., vertex node) to 

stand for the node nearest to a hexagon center (resp., vertex). 

We assume there is a node with transmission radius R located at the center of a hexagonal prism 

of side length L and height H.  We can draw a circumsphere of radius Rc for the hexagonal prism. 

The relationship of L, H and Rc is 2Ã , (Ⱦτ. We set V-Ratio to represent ratio of the volume 

of the hexagonal prism over the volume of the circumsphere as follows. 

V-Ratio = 
Ѝ
,(Ⱦ ,           (1) 

When V-Ratio is maximized, the volume of the hexagonal prism is maximized. So, we have to 

derive the first derivative of V-Ratio equation, and then find its solution. After some basic 

calculations, we have the solution  

H Ѝς ,                (2) 

We set the transmission radius R to be the circumsphere radius Rc. We then have 

 2 2Ã ,σȾς               (3) 

 ,
Ⱦ
           (4) 

( ,Ѝς
Ⱦ
Ѝς ς

Ѝ
           (5) 

To sum up, we can use a hexagonal prism of side length 
Ⱦ

 and height ς
Ѝ

 to represent the effective 

transmission space of a node of transmission radius R. 

To broadcast a packet throughout the entire network space, we need to achieve the following two 

goals: (a) to activate starting nodes for retransmission in every layer along the Z-axis, and (b) to 

activate center nodes in every layer for retransmission. Below, we show how to achieve the two goals. 
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How to activate staring nodes in different layers 

We partition the network space into multiple layers. The source node or the initial starting node 

S0, which initiates the broadcast of a packet, is assumed to be in the layer 0. S0 is required to activate 

the starting node St in every layer t with the help of interlayer nodes. S0 just transmits the packet to its 

two neighboring interlayer nodes I1 and I-1 in layer 1 and layer -1, respectively. Then, I1 will forward 

the packet to starting node S1 in layer 1 to activate it. Similarly, I-1 will forward the packet to the 

starting node S-1 in layer -1 to activate it. Likewise, stating nodes S1 (or S-1) will active starting node 

S2 (or S-2), and so on. So, the starting node in every layer will be activated along the Z-axis. 

 

 

Fig. 4 Illustration of space partitioning of 3DOBP 

 

 

Fig.5 Illustration of activation of starting nodes along the Z-axis and activation of center nodes in the 

layer 0 
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How to activate center nodes in a layer 

      As shown in Fig. 5, each layer forms hexagonal rings that can fully cover a layer when the rings 

expand. Hence, if all center nodes are activated to forward the broadcast packet, then all the nodes in 

the layer can receive the broadcast packet. Note that not all vertex nodes need to be activated. They 

are activated not for the purpose of covering the layer but for the purpose of forwarding the broadcast 

packet to center nodes. As we will show, a center node can rely on a vertex node to deliver packets to 

two center nodes. Thus, the number of activated vertex nodes is just half the number of activated 

center nodes.  

As shown in Fig. 5, the source node S0 in layer 0 first activates three vertex nodes V0,1,0, V0,1,1, 

V0,1,2 and two interlayer nodes I1, I-1. One vertex node then activates two center nodes. For example, 

the vertex node V0,1,0 activates two center nodes C0,1,0 and C0,1,1. Similarly, the vertex nodes V0,1,1 and 

V0,1,2 activate center nodes (C0,1,2, C0,1,3) and (C0,1,4, C0,1,5), respectively. We have mentioned how S0 

activates other starting nodes in different layers with the help of interlayer nodes. Below, we describe 

how S0 activates all center nodes in a layer with the help of hexagon rings. 

The hexagon rings have only one hexagon in the central (level-0) ring, and have six hexagons in 

the level-1 ring, and so on. In general, there are 6k hexagons in the level-k ring. A hexagon center in 

layer t and in the level-k ring is denoted as Ct,k,i, where i is an index ranging from 0 to 6k-1. Centers 

indexed by 0 lie on the horizontal axis staring from St towards right, while other centers are indexed 

counterclockwise (see Fig. 6). 

 

Fig.6 Illustration of hexagon rings (in layer t) of 3DOBP 
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The relative location LCt,k,i of Ct,k,i relative to St can be derived handily by a geometric mapping 

M(Ct,k,i)LCt,k,i. The geometric mapping will be well defined in subsection 3.2. Additionally, the LSt 

is LCt,0,0 and the LIt is (LCt-1,0,0+ LCt,0,0)/2 for t>0 (on the other hand, LIt is (LCt+1,0,0+ LCt,0,0)/2 for 

t<0 ), where LSt and LIt respectively denote the relative locations of starting node St and interlayer 

node It, which are relative to the absolute location of the source node S.  

In 3DOBP, the source node S0 (associated with C t,0,0) should send the broadcast packet and 

activate six center nodes (associated with Ct,1,0,…,Ct,1,5) in the level-1 ring to forward the packet. And 

each center node associated with Ct,k,i in the level-k ring, k²1, should either activate no node or 

activate two neighboring center nodes in the next level. Actually, for k²1, 3(k+1) center nodes in the 

level-k ring need to activate 2 neighboring center nodes in the level-(k+1) ring, while 3(k-1) nodes 

need not to activate any node. For example, all 6 level-1 center nodes need to activate 2 level-2 center 

nodes, and thus all 12 level-2 center nodes can be activated properly. For another example, 9 (resp., 3) 

out of 12 level-2 center nodes need to (resp., need not to) activate 2 level-3 center nodes, and thus all 

18 level-3 center nodes can be activated properly. We devise a mapping called the activation target 

mapping T(Ct,k,i) that outputs an empty set or a set {Ct,k+1,w, Ct,k+1,w+1} of two next-level neighboring 

center nodes for Ct,k,i, k²1, to activate. Note that Ct,k+1,w (resp., Ct,k+1,w+1) must be a neighboring center 

node of Ct,k,i; i.e., the associated hexagons of Ct,k,i and Ct,k+1,w (resp., Ct,k+1,w+1) must share an edge. 

The activation target mapping will be well defined in subsection 3.3. 

By the node activation process just mentioned, all center nodes can be activated to transmit the 

packet to cover the entire layer. However, since two center nodes cannot communicate with each 

other directly, we need intermediate nodes between them for relaying the packet. 3DOBP chooses 

vertex nodes (i.e., the node nearest to a hexagon vertex) as the intermediate nodes to take the 

advantage that a vertex node can reach two center nodes (e.g., Vt,1,0 can reach Ct,1,0 and Ct,1,1). In 

3DOBP, S takes 3 vertex nodes associated with Vt,1,0, Vt,1,1, and Vt,1,2 as intermediate nodes, while the 

other center node associated with Ct,k,i takes only 1 (or 0) vertex node associated with Vk+1,i. The 

relative location LVt,k,i of Vt,k,i, k>1, relative to S can be derived by computing the location of the 

center of Ct,k-1,i, Ct,k,w, and Ct,k,w+1 if Ct,k-1,i should activate Ct,k,w and Ct,k,w+1 (i.e., T(Ct,k-1,i)={ Ct,k,w, 

Ct,k,w+1}). Note that for k=1, LVt,1,i is the location of the center of S, Ct,1,2i, and Ct,1,2i+1 for i=0,1,2. 

The broadcast packet of 3DOBP is of the format P(LS, F, FA), where LS is the absolute location 

of the source node, and F is the set of relative locations of intended forwarding nodes in the next-level 

ring. And, FA is the set of relative locations of intended interlayer (or starting) nodes in the 
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neighboring layers. Note that each packet is sent along with a unique packet ID so that a node can 

decide if the packet has ever been received. Also note that the relative locations are delivered along 

with the indexes of center nodes or vertex nodes. That is, when a location LCt,k,i or LVt,k,i is delivered, 

the indexes t, k and i are also delivered in the packet. Those indexes are very important for a node to 

calculate the relative locations of intended forwarding nodes by the activation target mapping and the 

geometric mapping.  

3D Optimized Broadcast Protocol (3DOBP) 

The step for the source node S to broadcast a packet P 

1. S sends the packet P(LS, F,FA) with F={LV0,1,0, LV0,1,1, LV0,1,2}, FA={LI1, LI-1}. 

Steps for other node X receiving P(LS, F, FA): 

1. If X receives P for the first time, it registers P. Otherwise, it drops P and stops.  

2. If X is not a node nearest to a location in F or FA, it stops. 

3. If X is nearest to a center node associated with Ct,k,i of a location in F and T(Ct,k,i) ≠ Ø , then X 

sends P(LS, F¡) and stops, where F¡={LVt,k,i}. 

4. If X is nearest to a vertex node associated with Vt,k,i of a location in F, X sends P(LS, F¡, Ø ) and 

stops. Indeed, X can calculate T(Ct,k-1,i)= {Ct,k,w, Ct,k,w+1} based on indexes k, i and then set 

F¡={LCt,k,w, LCt,k,w+1}. 

5. If X is nearest to an interlayer node associated with It of a location in FA, X sends P(LS, Ø , FA¡) 

and stops. X set FA¡={LSt+1} if t is positive (i.e. up-direction activation). Otherwise, X set 

FA¡={LSt-1} if t is negative (i.e. down-direction activation). 

6. If X is nearest to a starting node associated with St of a location in FA, X sends P(LS, F¡, FA¡) 

and stops. Indeed, X can calculate and then set F¡={ LVt,1,0, LVt,1,1, LVt,1,2}. X set FA¡={LIt+1} if 

t is positive (i.e. up-direction activation). Otherwise, X set FA¡={LIt-1} if t is negative. 

 

                                                                                        

The article [13] proposes two mechanisms to determine whether a node X is the one nearest to a 

given location. The first mechanism is to make nodes periodically exchange location information with 

neighboring nodes so that each node can properly elect the node nearest to the given location. The 

second mechanism is to enforce a backoff timer which is inversely proportional to the distance 

between a node’s location and the given location. The node nearest to the given location thus has the 
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shortest backoff timer and will earliest issue a response, which in turn prohibits other nodes from 

responding. When node density is sufficiently high, it is usual that only the node closest to the 

selected location would retransmit the packet. 3DOBP adopts the second mechanism to determine 

whether a node is the one nearest to a given location. In this way, a node does not need to exchange 

location information periodically; a node needs only its own location information for 3DOBP to run 

properly. 

3.2. Geometric Mapping 

In this subsection we present the geometric mapping M(Ct,k,i) that maps a hexagon center node 

Ct,k,i to a location Lt,k,i relative to the source node S. Let Zt,0,0 denote the location relative to S in the t-

layer. As shown in Fig. 7, each hexagon ring can be partitioned into six sectors, indexed by 0,..,5, 

with each sector having k hexagon centers in the level-k ring. Let Zt,k,q denote the location relative to 

S of the first hexagon center in the sector q of the level-k hexagon ring in the layer t (e.g., Z1,2,0 is the 

location of the hexagon center on the horizontal line from S towards  right in the layer 1). We have 

 :ȟȟ (ϽὸȟὯЍσ,ϽÃÏÓήϽφπЈȟὯЍσ,ϽÓÉÎήϽφπЈ for q=0,..,5, where L is the hexagon side 

length determined by Eq. (4), and H is the height of hexagon prism determined by Eq. (5). Since each 

sector has k hexagon centers, we can figure out that hexagon center Ct,k,i is within sector q, where q 

=ỗi/kỘ. Now we can define the geometric mapping M(Ct,k,i) as follows. (Note that “+” represents the 

vector addition operator in the mapping and the following location calculations.) 
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ὤȟȟ πȟὭ ήὯЍσ,ȟπȟÉÆ ή τ

ὤȟȟ πȟὭ ήὯ
Ѝσ,

ς
ȟὭ ήὯ

σ,

ς
ȟÉÆ ή υ

 

         

In Fig. 7, we illustrate the above mapping by two examples. The first example is about M(C0,2,1). 

Since q=ỗ1/2Ộ=0, we calculate :ȟȟ πȟςЍσ,ϽÃÏÓπȟςЍσ,ϽÓÉÎπ πȟςЍσ,ȟπ . We then 
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have -#ȟȟ :ȟȟ πȟ
Ѝ
ȟ . The second example is about M(C0,2,7). Since q=ỗ7/2Ộ=3, we 

calculate :ȟȟ πȟςЍσ,ϽÃÏÓρψπЈȟςЍσ,ϽÓÉÎρψπЈ πȟςЍσ,ȟπ . We then have 

-#ȟȟ :ȟȟ πȟ
Ѝ
ȟ .  

3.3. Activation Target Mapping 

In this subsection we present the activation target mapping T(Ct,k,i). The input of T(Ct,k,i) is a 

center node Ct,k,i for k²1. T(Ct,k,i) is to find two next-level neighboring center nodes Ct,k+1,w and 

Ct,k+1,w+1 of Ct,k,i, where w is even. If such neighboring nodes exit, the output of T(Ct,k,i) is { Ct,k+1,w, 

Ct,k+1,w+1}; otherwise, the output is an empty set. For example, T(C0, 1,0)={C0,2,0, C0,2,1} since Ct,k+1,w is 

C0,2,0 and Ct,k+1,w+1 is C0,2,1 with w=0. For another example, T(C0,2,1)=Ø , since the index w of the 

neighboring center nodes (C0,3,1 and C0,3,2) of C0,2,1 is odd.  

As shown in Fig. 7, each hexagon ring can be partitioned into six sectors, indexed by 0,..,5, each 

having a starting axis (i.e., A0, ,…, A5). Let q=ỗi/kỘ denote the index of the sector in which Ct,k,i 

resides.  T(Ct,k,i) is defined as follows. 

T(Ct,k,i)= 

ừ
Ử
Ử
Ử
Ử
Ử
Ừ

Ử
Ử
Ử
Ử
Ử
ứ

#ȟ ȟȟ#ȟ ȟ ȟ ÉÆ ή π ÁÎÄ  Ὥ ÉÓ ÅÖÅÎ

#ȟ ȟ ȟ#ȟ ȟ ȟ ÉÆ ή ρ ÁÎÄ  Ὥ ÉÓ ÏÄÄ

#ȟ ȟȟ#ȟ ȟ ȟ ÉÆ ή ρȟὭ ÍÏÄ Ὧ π ÁÎÄ  Ὥ ÉÓ ÅÖÅÎ

#ȟ ȟ ȟ#ȟ ȟ ȟ ÉÆ ή ς ÁÎÄ Ὥ ÉÓ ÅÖÅÎ

#ȟ ȟ ȟ#ȟ ȟ ȟ ÉÆ ή σ ÁÎÄ Ὥ ÉÓ ÏÄÄ

#ȟ ȟ ȟ#ȟ ȟ ȟ ÉÆ ή σȟὭ ÍÏÄ Ὧ π ÁÎÄ Ὥ ÉÓ ÅÖÅÎ

#ȟ ȟ ȟ#ȟ ȟ ȟ ÉÆ ή τ ÁÎÄ Ὥ ÉÓ ÅÖÅÎ

#ȟ ȟ ȟ#ȟ ȟ ȟ ÉÆ ή υ ÁÎÄ Ὥ ÉÓ ÏÄÄ

#ȟ ȟ ȟ#ȟ ȟ ȟ    ÉÆ ή υȟὭ ÍÏÄ Ὧ π ÁÎÄ Ὥ ÉÓ ÅÖÅÎ

ȟɲ ÏÔÈÅÒ×ÉÓÅ

 

The definition of T(Ct,k,i) contains 10 cases of different conditions. The first case (q=0 and i is 

even) drives the center node Ct,k,i to activate two neighboring center nodes Ct,k+1,i and Ct,k+1,i+1 in the 

next level, only if Ct,k,i is in sector 0 and i is even. The second case (q=1 and i is odd) drives Ct,k,i to 

activate Ct,k +1,i+1 and Ct,k +1,i+2, only if Ct,k,i is in sector 1 and i is odd. The third case (q=1, (i mod k)=0 

and i is even) drives Ct,k,i to activate Ct,k+1,i and Ct,k +1,i+1, only if Ct,k,i is in sector 1, Ct,k,i is on the 

starting axis of sector 1 (i.e. A1), and i is even. Similarly, the fourth, ..., and the ninth cases drive Ct,k,i 
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in the sectors 2, …, and 5 to activate two center nodes for specific conditions. The last case drives 

Ct,k,i not to active any node, only if none of the first nine conditions is satisfied. 

 

Fig. 7 The illustration of the Geometric Mapping and Activation Target Mapping 

 

In Fig. 7, we illustrate T(Ct,k,i) by three examples. The first example is about T(C0,2,0). Let 

q=ỗ0/2Ộ=0. Since q is 0 and i (=0) is even, we have T(C0,2,0)={ C0,3,0, C0,3,1}. The second example is 

about T(C0,2,5). Let q=ỗ5/2Ộ=2. Since q is 2 and i (=5) is not even, we have T(C0,2,5)=Ø , which means 

the node C0,2,5 needs not to activate any node. The third example is about T(C0,2,2). Let q=ỗ2/2Ộ=1. 

Since q is 1, i (=2) is even, and i is a multiple of k (=2), we have T(C0,2,2)={ C0,3,2, C0,3,3}. 

4. Performance Analysis 

In this section, we first derive the theoretical upper bound of transmission efficiency for 3D 

wireless networks. We then analyze and compare the transmission efficiency of the proposed 3DOBP 

and the 3D broadcast protocols based on filling space by polyhedrons: cubes, hexagonal prisms, 

rhombic dodecahedrons, and truncated octahedrons.    

4.1. Transmission Efficiency Upper Bound 

The transmission efficiency is defined as the effective transmission region over the sum of the 

transmission regions. We use two spheres A and B of radius R in Fig. 8 to derive the transmission 

efficiency upper bound. 

According to [17], the intersected volume of two spheres is as follows: 

C t,2,6 
St 

C t,1,2 Ct,1,1 

Ct,1,0 

C t,1,4 

C t,2,5 

C t,2,4 

C t,1,3 

C t,2,3 

C t,2,2 

Ct,2,1 

C t,2,11 

C t,2,10 

C t,2,8 

C t,2,9 

C t,2,7 

Vt,1,0 

V t,2,2 

V t,2,1 
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V t,2,4 
V t,2,5 

V t,1,1

 

 

  V t,1,2 

Ct,0,0 

C t,2,0 

V t,2,0 

V t,2,3 

Ct,3,0 

Ct,3,1 

C t,3,2 

C t,3,3 C t,3,4 C t,3,5 C t,3,6 

C t,3,7 
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Zt,2,3 

A0 

A1 A2 

A3 
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6 2ȟὨ ʌτ2 Ὠ ς2 Ὠ           (6) 

In Eq. (6), R is the radius of sphere and d is the distance of two spheres. 

To minimize the intersected volume, while keeping the two sphere center within distance R is 

d=R. Hence, the upper bound of transmission efficiency (TE)  in the 3D space is as follows: 

4%2
ȟ

           (7) 

In Eq. (7), Vsphere is the volume of sphere with radius R, which is (4/3)πR
3
. 

Letting R=1, we have the upper bound of transmission efficiency in 3D as follows: 

4% ρ
Ⱦ

Ⱦ
πȢψτσχυ           (8) 

Thus, we have that the transmission efficiency upper bound is 0.84375. 

 

Fig.8 Intersected spheres, where center of sphere A on the left is at (0,0,0) and sphere B on the right is 

at (1,0,0), and the distance between two centers is one unit distance. 

4.2. Transmission Efficiency of Cubes 

We assume a cube is with the side length L. The center of each cube is located by a node of 

transmission radius R. We can form a circumsphere for a cube, where the radius of circumsphere is 

Rc. The relationship between the side length and the radius of circumsphere is: , ς2ÃȾЍσ. The 

distance between two neighboring cube centers should be within R. Thus, 2 , ς2ÃȾЍσ. 

For a set of N nodes with the cube arrangement, the transmission efficiency is: 

Ͻ

Ͻ ȾЍ ϽȾ

ȾЍ

ȾЍϽȾ
πȢςσψχσς         (9) 

 

-1 -0.5 0 0.5 1 1.5 2
-1

0

1

-1
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0

0.5

1

Rc 
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Fig. 9 Illustration of the cube arrangement, where L is the side length, R is the transmission radius, 

and Rc is the radius of the circumsphere of the cube cell 

4.3 Transmission Efficiency of Hexagonal Prisms 

We assume a hexagonal prism is with side length L and height H, and that the center of each 

hexagonal prism is located by a node with transmission radius R. By Eq. (2), the hexagon prism has 

the maximal volume when H ,Ѝς. We have the volume of hexagonal prism (HPV) is 
Ѝ
,Ͻ

,Ѝς
Ѝ

Ѝ
,. Moreover, we set the radius Rc of the circumsphere of the hexagonal prism as follows: 

2Ã , (Ⱦτ , ,Ⱦς σ,Ⱦς ,σȾς       (10) 

And, the relationship between the transmission radius and the circumsphere radius is R=Ѝς2Ã. We 

have the following equation: 

2 Ѝς2Ã Ѝς, Ѝσ,          (11) 

For a set of N nodes with hexagonal prism arrangement, the transmission efficiency is as follows: 

Ͻ

Ͻ ϽȾ

Ѝ

Ѝ

ϽЍ ϽȾ

Ѝ

Ѝ

ϽЍ ϽȾ Ѝ
πȢρφψψπω       (12) 

 

Fig. 10 Illustration of the hexagonal prism arrangement 

4.4 Transmission Efficiency of Rhombic Dodecahedrons 

A rhombic dodecahedron can be constructed by two cubes of the length L. Based on the results 

of [1], we have the following settings. We can construct a circumsphere for a rhombic dodecahedron. 

The radius Rc of the circumsphere is L. The volume RDV of a rhombic dodecahedron is 2L
3
. The 

transmission radius R of a rhombic dodecahedron center node is Ѝς2Ã. Since Rc=L, we have R=Ѝς,. 

     For a set of N nodes with rhombic dodecahedron arrangement, the transmission efficiency is: 

Ͻ

Ͻ ϽȾ ϽЍ ϽȾ ϽЍϽȾ Ѝ
πȢρφψψπω       (13) 

Rc 
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Fig. 11 Illustration of the rhombic dodecahedron cell 

4.5 Transmission Efficiency of Truncated Octahedrons 

We assume that a truncated octahedron is of side length L and the center of each truncated 

octahedron is located by a node whose transmission radius is R. Let Rc be the radius of the 

circumsphere of a truncated octahedron. Based on the results of [1], we set Rc= LЍρπ/2 and 

R=4Rc/Ѝυ. Then we have 2
Ѝ
Ͻ
Ѝ

ς,Ѝς. 

For a set of N nodes with truncated octahedron arrangement, the transmission efficiency is: 

ϽЍ

Ͻ Ѝ ϽȾ

ϽЍ

Ͻ Ѝ ϽȾ
πȢρρωσφφ       (14) 

 

Fig. 12 Illustration of the truncated octahedron cell 

4.6 Transmission Efficiency of 3DOBP 

We assume a hexagonal prism is with side length L and height H, and that the center of each 

hexagonal prism is located by a node with transmission radius R. By Eqs. (4) and (5), we have 

,
Ⱦ
   and ( ς

Ѝ
. The volume HPV of a hexagonal prism is: 

(06
Ѝ
,Ͻ(

Ѝ
,Ͻ,Ѝς

Ѝ

Ѝ
,         (15) 

With the help of hexagon rings, in 3DOBP, all center nodes suffice to cover a layer of the space. 

We assume the number of center nodes is N. Then we need a number of N/2 of vertex nodes to be 

activated to forward packets to the N center nodes. Let M be the number of center nodes and activated 

vertex nodes. We have  

. В φË σ(( ρ                (16) 

 

Rc 

Rc 
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- В φË В φË σ(( ρ          (17) 

To simplify the calculation, we assume the number of interlayer nodes is ignorable. The 

transmission efficiency of the proposed protocol is 

42
Ͻ

Ͻ Ͻ

Ͻ

Ͻ ϽȾ

Ͻ

Ͻ ϽȾ

Ѝ

Ѝ

Ⱦ
πȢσρψσρ                         (18) 

4.7 Transmission Efficiency Comparison 

In this subsection, we compare 3DOBP with other 3D broadcast protocols based on filling space 

by polyhedrons like cubes [7], hexagonal prisms [1, 3], rhombic dodecahedrons [1, 2], and truncated 

octahedrons [1] in terms of transmission efficiency. Note that the comparisons do not include the 3D 

broadcast protocol AACP proposed in [4], since the network space is not fully covered even when 

node density is sufficiently high. The comparison results are summarized in the Table 1. We can 

observe that 3DOBP is with the highest transmission efficiency. 

 

Table 1. Comparisons of transmission efficiency 

Approach Transmission efficiency 

Cube based 3/4π ≈ 0.238732 

Hexagonal Prism based 3/(4Ѝςʌ) ≈ 0.168809 

Rhombic Dodecahedron based 3/(4Ѝςʌ) ≈ 0.168809 

Truncated Octahedron based 3/8π ≈ 0.119366 

3DOBP 1/π ≈ 0.31831 

 

5. Conclusion 

Wireless technologies are promising for industrial automation and distributed control due to the 

properties of mobility, reduced deployment and maintenance costs, and so on. By the technologies, 

wireless networks are formed for integrating processes and devices of industrial systems. 

Broadcasting is a fundamental operation in the wireless network to disseminate data and/or control 

signals. In this paper, we have generalized the definition of transmission efficiency for 3D wireless 

networks and shown that the theoretical upper bound of transmission efficiency of 3D broadcast 

protocols is 0.84. We have further proposed an optimized broadcast protocol, called 3D optimized 

broadcast protocol (3DOBP), by partitioning the 3D space into multi-layer hexagonal prisms of a 
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hexagon ring pattern in each layer. As we have shown, the transmission efficiency of the proposed 

protocol can reach 1/π, which is better than those of other 3D broadcast protocols based on 

polyhedron-filling schemes using cubes, hexagon prisms, rhombic dodecahedrons, and truncated 

octahedrons. We conclude that 3DOBP is very efficient for broadcasting in wireless networks for 

industrial systems of 3D operation environments such as multi-storey factories.  

 

Appendix 

In this appendix, AACP [4, 14] is investigated to see whether it can fully cover the entire 

network space. We conducted simulation experiments with the Matlab tool under the assumption that 

12 rebroadcasting nodes are at the ideal strategic locations suggested by paper [4] (see Fig. 15). To be 

more precise, rebroadcasting nodes are deployed on two layer planes with 6 nodes begin arranged on 

a layer plane as a hexagonal pattern. The distance between the two layer planes is 0.8R, where R is 

the transmission radius of the rebroadcasting nodes. We also uniformly deploy nodes with a high 

density (i.e., 500 nodes per R³R³R space) and monitor only the nodes inside the space bounded by 

the 12 rebroadcasting nodes. The simulation result shows that 6% of the monitored nodes do not 

receive the broadcast packet, which implies the coverage ratio is only about 94%. The 12 

rebroadcasting nodes and the nodes not receiving the broadcast packet are depicted in Fig. 16. 

 

Fig. 15. The deployment of 12 rebroadcasting nodes on two layer planes for AACP, where each 

sphere represents the covering space of a rebroadcasting node  
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Fig. 16 Illustration of unreachable nodes in AACP, where dot symbols represent unreachable nodes 

and star symbols represent rebroadcasting nodes 
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